Telegram Group & Telegram Channel
🧩 Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой

В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.

📉 Типовой сценарий:
Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.

🎯 Рекомендованный подход — поиск и устранение первоисточника:

Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.).
Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления.
Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.

🛠 После выявления причины необходимо внести корректировки на уровне источника данных:
Обеспечить сохранение числовой точности.
Внедрить строгие проверки форматов и типов.
Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.

⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/969
Create:
Last Update:

🧩 Почему важно устранять первопричину искажения десятичных данных, а не ограничиваться их очисткой

В задачах машинного обучения и аналитики недостаточно просто очищать обучающие или производственные данные от некорректных значений. Особенно это касается десятичных чисел, поскольку их искажение может происходить незаметно, но приводить к существенному снижению качества моделей и принятию ошибочных бизнес-решений.

📉 Типовой сценарий:
Обнаруживается, что значения теряют дробную часть — например, «12,5» становится «125». После этого данные очищаются, модель переобучается, однако через некоторое время проблема возникает снова.

🎯 Рекомендованный подход — поиск и устранение первоисточника:

Проверить, каким образом данные изначально собираются (веб-формы, скрипты импорта и пр.).
Проанализировать промежуточные этапы обработки: возможно, ошибка возникает при парсинге CSV-файлов, при приведении типов или из-за некорректного округления.
Ознакомиться с системными журналами и логами: не исключено, что ошибка началась после обновления компонентов, изменения конфигурации или внедрения новых версий ПО.

🛠 После выявления причины необходимо внести корректировки на уровне источника данных:
Обеспечить сохранение числовой точности.
Внедрить строгие проверки форматов и типов.
Настроить автоматические уведомления о появлении подозрительных или выходящих за допустимые границы значений.

⚠️ Важно учитывать, что подобные ошибки могут проявляться непостоянно, а лишь в отдельных случаях. Именно поэтому требуется постоянный мониторинг распределения значений и логов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/969

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from jp


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA